LeetCode 946. 验证栈序列 中等
作者:Choi Yang
更新于:1 个月前
字数统计:486 字
阅读时长:2 分钟
阅读量:
题目描述
给定 pushed
和 popped
两个序列,每个序列中的 值都不重复,只有当它们可能是在最初空栈上进行的推入 push
和弹出 pop
操作序列的结果时,返回 true
;否则,返回 false
。
示例 1:
javascript
输入:pushed = [1,2,3,4,5], popped = [4,5,3,2,1]
输出:true
解释:我们可以按以下顺序执行:
push(1), push(2), push(3), push(4), pop() -> 4,
push(5), pop() -> 5, pop() -> 3, pop() -> 2, pop() -> 1
输入:pushed = [1,2,3,4,5], popped = [4,5,3,2,1]
输出:true
解释:我们可以按以下顺序执行:
push(1), push(2), push(3), push(4), pop() -> 4,
push(5), pop() -> 5, pop() -> 3, pop() -> 2, pop() -> 1
示例 2:
javascript
输入:pushed = [1,2,3,4,5], popped = [4,3,5,1,2]
输出:false
解释:1 不能在 2 之前弹出。
输入:pushed = [1,2,3,4,5], popped = [4,3,5,1,2]
输出:false
解释:1 不能在 2 之前弹出。
提示:
javascript
0 <= pushed.length == popped.length <= 1000
0 <= pushed[i], popped[i] < 1000
pushed 是 popped 的排列。
0 <= pushed.length == popped.length <= 1000
0 <= pushed[i], popped[i] < 1000
pushed 是 popped 的排列。
来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/validate-stack-sequences 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路
借助一个新栈来存放入栈的元素,然后每次和出栈的元素进行比对,如果匹配成功,双方进行出栈操作,最后,如果这个新栈为空,那么代表这个栈入栈和出栈序列是合理的,返回 true
,否则返回false
javascript
/**
* @param {number[]} pushed
* @param {number[]} popped
* @return {boolean}
*/
var validateStackSequences = function (pushed, popped) {
// 借助一个新的栈
let stack = [];
for (let cur of pushed) {
// 存放入栈的元素
stack.push(cur);
// 和出栈元素进行比对,如果匹配都弹出栈
while (stack[stack.length - 1] === popped[0] && stack.length) {
stack.pop();
popped.shift();
}
}
return !stack.length;
};
/**
* @param {number[]} pushed
* @param {number[]} popped
* @return {boolean}
*/
var validateStackSequences = function (pushed, popped) {
// 借助一个新的栈
let stack = [];
for (let cur of pushed) {
// 存放入栈的元素
stack.push(cur);
// 和出栈元素进行比对,如果匹配都弹出栈
while (stack[stack.length - 1] === popped[0] && stack.length) {
stack.pop();
popped.shift();
}
}
return !stack.length;
};
cpp
class Solution {
public:
bool validateStackSequences(vector<int>& pushed, vector<int>& popped) {
stack<int> st;
int i = 0;
for (auto num : pushed) {
st.push(num);
while (!st.empty() && st.top() == popped[i]) {
st.pop();
i++;
}
}
return st.empty();
}
};
class Solution {
public:
bool validateStackSequences(vector<int>& pushed, vector<int>& popped) {
stack<int> st;
int i = 0;
for (auto num : pushed) {
st.push(num);
while (!st.empty() && st.top() == popped[i]) {
st.pop();
i++;
}
}
return st.empty();
}
};
java
class Solution {
public boolean validateStackSequences(int[] pushed, int[] popped) {
Stack<Integer> stack = new Stack<>();
int i = 0;
for (int num : pushed) {
stack.push(num);
while (!stack.isEmpty() && stack.peek() == popped[i]) {
stack.pop();
i++;
}
}
return stack.isEmpty();
}
}
class Solution {
public boolean validateStackSequences(int[] pushed, int[] popped) {
Stack<Integer> stack = new Stack<>();
int i = 0;
for (int num : pushed) {
stack.push(num);
while (!stack.isEmpty() && stack.peek() == popped[i]) {
stack.pop();
i++;
}
}
return stack.isEmpty();
}
}
python
class Solution:
def validateStackSequences(self, pushed: List[int], popped: List[int]) -> bool:
stack = []
i = 0
for num in pushed:
stack.append(num)
while stack and stack[-1] == popped[i]:
stack.pop()
i += 1
return not stack
class Solution:
def validateStackSequences(self, pushed: List[int], popped: List[int]) -> bool:
stack = []
i = 0
for num in pushed:
stack.append(num)
while stack and stack[-1] == popped[i]:
stack.pop()
i += 1
return not stack
javascript
学如逆水行舟,不进则退
学如逆水行舟,不进则退